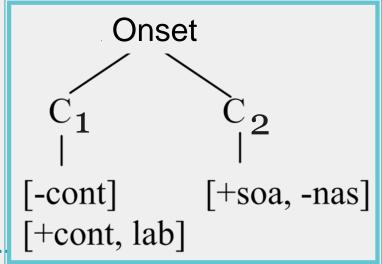

The variability in child outputs


Is there a clue to phonological underspecification?

Andressa Toni
Ph.D student
University of São Paulo
andressa.toni@usp.br

Study object: Complex onsets - C1C2V

- **Consoant1:** /p, b, t, d, k, g/
- + Consoant2: /l, r/

Vowel: /i, e, ϵ , a, ϵ , o u/

brincar to playdragão dragonblusa blouse

in**gl**ês English

Rare contexts:

- ****dl**im
- *atleta athlete

Goals

- To explore patterns in the variability on child outputs;
- o To discuss what this variability can reveal about the phonological system in development.

Outline

- Syllable types in Brazilian Portuguese;
- Syllabic development in BP children speech;
- A study on CCV syllables:

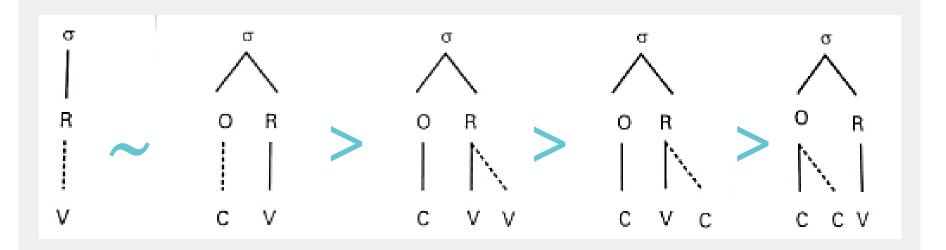
Methods

Patterns in children productions

Accounting the variability

'grudei' *I sticked*: [gu'dej],[glu'dej],[gur'dej],[gu.ru'dej], [gu.de'rej]...

Syllable types in Brazilian Portuguese


CV: be bê <i>ba<u>by</u></i> 60.6%	aicy
V: águia <u>eag</u> le 8.4%	
CVC: pai fa <u>ther</u> 15.4%	
CCV: brincar play 4.4%	
Others (VC, VCC, CVCC, CCVCC) 11.2%	

CCV segmental combination frequency

/tr/	34.8%	/tl/	0.01%	/dr/	1.36%	/dl/	0%
/pr/	26.1%	/pl/	5.05%	/br/	10.8%	/bl/	1.81%
/kr/	5.24%	/kl/	2.72%	/gr/	6.56%	/gl/	0.39%

ARO&GUIMARÃES-FILHO, 2007)

Syllabic development in BP

CCV syllables are the last ones acquired by children;

~5 or 6 years old

But children do not avoid words with this kind of syllable:
 brincar to play, criança child, triste sad, braço arm...

~before 2 years old

How do children manage to speak this late structure in these early words?

Syllabic development in BP: CCV

How can children produce complex onsets?

By avoiding the CCV structure (not the word).

But how?

- o By deleting the CCV syllables. ----- /klase/ > ['pa.tʊ] /klase/ > ['a.sɪ]
- o Yes. But also...

Syllabic development in BP: CCV

How can children produce complex onsets?

But how?

By avoiding the CCV structure (not the word).

```
/prato/ > ['pa.tʊ]
                                                /klase/ > ['a.si]
o By deleting the CCV syllables.
o Yes. But also...
By changing the consonant in C2: witch
                                              /bru[a/ > ['blu.[e]
By changing the consonant in C1: goalpost
                                              /trave/ > ['kra.vi]
By changing the CCV position: goalpost
                                              /trave/ > ['ta.vri]
By changing CCV to CVC: thin
                                           /magro/ > ['ma.gor]
By changing CCV to CV.CV: Pluto
                                            /pluto/ > [pu'lu.tʊ]
```

Syllabic development in BP: CCV

How can children produce complex onsets?

By avoiding the CCV structure (not the word).

- In BP there is a wide range of ways to avoid CCV;
 - as in Czech, English, Dutch, French, EP, Serbian... (GREENLEE, 1974)
- Children can delete or modify a structure to avoid it and these strategies can coexist in a child's output;
- Even when a child already can produce target CCVs, deleted and modified outputs are still used.

Why is that?

Why a structure would have different possible outputs?

How can we access children syllabic knowledge in production data?

Selkirk (1982:340): Phonological and phonotactic rules can point to the internal structure in the syllable.

How can we access children syllabic knowledge in production data?

Repair strategies - phonotatic and segmental manipulations:

grudei' I sticked: [gu'dej],[glu'dej],[gur'dej],[gu.ru'dej],[gu.de'rej]...

How can we access children syllabic knowledge in production data?

- Repair strategies phonotatic and segmental manipulations:
- grudei' I sticked: [guˈdej],[gluˈdej],[gurˈdej],[gu.ruˈdej],[gu.deˈrej]...
- Palatalization in /tri, dri/ contexts:

Canonical rule: CV /t, d/ → [tʃ, dʒ] / _ [coronal high vowel]
$$\omega$$
 /tigre/ → ['tʃi.grɪ] /sede/ → ['se.dʒɪ]

How can we access children syllabic knowledge in production data?

- Repair strategies phonotatic and segmental manipulations:
 grudei' / sticked: [gu'dej],[glu'dej],[gur'dej],[gu.ru'dej],[gu.de'rej]...
- Palatalization rule in /tri, dri/ contexts:
 If CCV is specified in Phonology, /tri, dri/ palatalization is blocked;
- If CCV isn't specified in Phonology, palatalization applies in /tri, dri/.

mons/tri/nho mons/ti/nho mons[ti]nho
mons/tØi/nho mons[ti]nho

Naturalistic/Longitudinal data:

- 3 children aged from 1;7 to 5;6 years old recorded biweekly;
- 203 sessions of 30 minutes each with mother/child interaction;
- Total of 4,330 CCV syllables collected.

Transversal/Experimental data:

Data accoustically verified with Praat

Naturalistic/Longitudinal data:

- 3 children aged from 1;7 to 5;6 years old recorded biweekly;
- 203 sessions of 30 minutes each with mother/child interaction;
- Total of 4,330 CCV syllables collected.

Transversal/Experimental data:

- 49 children aged from 2;4 to 5;10 years old;
- Repetition task with words and nonwords;
- Total of 3,062 CCV syllables collected.

Data accoustically verified with Praat

Data classification

1. By % of CCV target productions:

Group 1	roup 1 Group 2		Group 4	Group 5	
0-5%	6-40%	41-60%	61-75%	75-100%	

2. By CCV way of production:

- Target production;
 Repair strategies;

 - C2 deletion

3. By structural type of production:

- Structural maintaining productions;
- Structural changing productions.

CCV production in child speech: Examples

•	Target production:	witch	/b r uʃa/	[s]. und
•	C1 Substitution:	goalpost	/trave/	[ˈkɾa.vɪ]
•	C2 Substitution:	witch	/b r uʃa/	[ˈblu.ʃɐ]
•	Transposition:	goalpost	/trave/	[ˈta.vrɪ]
•	Reciprocal movement:	Drigo	/drigo/	[ˈgri.dʊ]
•	C1 Deletion:	Dlato	/dlato/	[ˈ la .tʊ]
•	C2 Deletion:	witch	/b r uʃa/	['bu.se]
•	CCV Palatalization:	rail	/triko/	[ˈ ʧ i.ʎʊ]
•	Onset deletion:	class	/klase/	['a.sı]
•	Epenthesis: money	change	/troko/	[toˈro.kʊ]
•	Metathesis:	thin	/ma gr o/	['ma.gor]
•	Coalescence:	Pluto	/ pl uto/	[ˈ fu .tʊ]

CCV production in child speech: Examples

Target production:		/b r uʃa/	[ˈ <mark>bru</mark> .ʃɐ]
C1 Substitution:	Structural	/trave/	[ˈ <mark>kɾa</mark> .vɪ]
C2 Substitution:	maintaining	/b r uʃa/	[ˈ <mark>blu</mark> .ʃɐ]
Transposition:	productions	/ tr ave/	[ˈta.vrɪ]
Reciprocal moveme	ent:	/ drig o/	[<mark>'gɾi.d</mark> ၓ]
C1 Deletion:		/ d lato/	[ˈ la .tʊ]
C2 Deletion:		/b r uʃa/	[ˈbu.sɐ]
CCV Palatalization:		/triko/	[ˈ ʧi .ʎʊ]
Onset deletion:	Structural	/klase/	[' a .sɪ]
Epenthesis:	changing productions	/troko/	[toˈro. kʊ]
Metathesis:	productions	/ma gr o/	['ma. gor]
Coalescence:		/ pl uto/	[ˈ fu .tʊ]

Questions

1. Is there a preference between deleting or modifying the CCV structure?

- 2. Is there a specific segmental context avoided in CCV?
- **3**. Which type of CCV production children prefer *Structural maintaining* or *Structural changing*?
- **4.** Do CCV productions vary according to the developmental moment?

Results: Target, repaired and palatalized CCVs

Phonotatic and Phonological clues

1. Is there a preference between deleting or modifying the CCV structure?

Naturalistic Naturalistic												
Child		Lz Am										
Groups	G1 (365)	G2 (1085)	G3	G3 (431) (11)	G1 (714)	G1 (1510)				
Target production	6.03%	28.76%	51.	.51%	66.35%		1.82%	1.52%				
Deletion	90.41%	66.54%	44.78%		27.96%		89.78%	99.56%				
Modification	3.56%	4.7%	3.71%		5.69%		8.4%	1.92%				
Experimental												
Groups	G1 (884)) G2 (44	41)	(1) G3 (328)		G	4 (824)	G5 (585)				
Target production	0.79%	28.34	.% 49		49.7%		3.71%	75.38%				
Deletion	70.59%	26.76	%	5.7	5.79%		10.8%	6.33%				
Modification	28.62%	44.99	%	44.	.51% 2		5.49%	18.29%				

G1: Deletion is preferred | G2-G5: Deletion is preferred in NATURALISTIC; Modification in EXPERIMENTAL.

2. Is there a specific segmental context avoided in CCV?

Chi-square test	G1	G1 G2		G4	G5
,	p-value	p-value	p-value	p-value	p-value
Liquid type	< 0.001	0.226	0.001	0.05484	< 0.001
Plosive PoA	< 0.001	0.5886	0.1257	< 0.001	< 0.001
Vowel type	0.9976	0.5635	0.3945	0.6411	0.1296

More targetable to changes:

Coronals > Dorsal > Labial

Laterals > flaps

2. Is there a specific segmental context avoided in CCV?

Naturalistic		L	Am	Ar						
Grupos	G1	G2	G2 G		G4		G1	G1		
/l/→ /r/	1/2	0/25	O	0/4 0/4		4 0/7		0/8		
/l/→ glide	0/2	0/25	0/25 0/4		0/4 0/4		0/7	0/8		
/r/→ /l/	0/2	18/25	4/4		4/4		6/7	0/8		
/r/→ glide	1/2	7/25	7/25 0.		0/4 0/4		1/7	8/8		
Experimental	G1	G2		G3		G4		G5		
/I/→ /c/	3/27	51/10	8(58/71		34/53		15/23		
/I/→ glide	13/27	5/10	8	2/71		0/53		4/23		
/r/→ /\/	7/27	50/10	50/108		4/71		16/53	4/23		
/r/→ glide	4/27	2/10	8	7/71		3/53		0/23		

 \rightarrow C/r/V more productive than C/l/V in BP

3. CCV child productions: Maintaining or Changing CCV?

Naturalistic Natur												
Groups	Lz G1	Lz G2	Lz G3	Lz G	4 Am G	1 Ar G1						
CCV Maintaining	24 6.57%	345 31.77%	226 68.49%	145 68.49		32 2.12%						
CCV Changing	nging 341 741 104 93.43% 68.23% 31.51%		67 31.69	692 % 97.92%	1477 6 97.88%							
Experimental												
Groups	G1	G2	G	3	G4	G5						
CCV Maintaining	41 4.54%	273 55.49		66 14%	660 77.74%	521 87.56%						
CCV Changing	864 99.56%	219 44.51		88 86%	189 22.26%	74 12.44%						

G2 to G5 data show a growing trend to maintain CCV structure

Questions

1. Is there a preference between deleting or modifying the CCV structure?

Yes! But it depends on the developmental moment and on the nature of the data;

- **2.** Is there a specific segmental context avoided in CCV? Yes! Coronals and laterals are avoided;
- 3. Which type of CCV production children prefer Structural maintaining or Structural changing? Children start changing the structure, and then modifies CCV segmental content, maintaining the structure;
 - **4.** Do CCV productions vary according to the developmental moment?

YES!

What about palatalizing CCV contexts?

Naturalistic data:

G1: All children sometimes palatalized reduced CCVs;

G2-G4: 1 child sometimes palatalized CCV; No /tri, dri/contexts with the other 2 children.

Experimental data:

G1: 1 child categorically palatalized the reduced CCVs;

6 children categorically blocked the palatalization in CCV;

8 children sometimes applied the palatalization in CCV;

G2-G4: 3 children sometimes applied the palatalization in CCV;

All other children blocked CCV

What about palatalizing CCV contexts?

G1	1	2	3		4	5	6	6	7		8		9	10
/tri, dri/ >> [ʧi, ʤi]	100% (18)	0%	0%		23.08% (3)	41.67% (5)		14,29% (1)	80% (8)	6	0%		0%	20% (1)
/tri, dri/ >> [ti, di]	0%	100% (9)	100% (10)		76.92% (10)	58.33% (10)		35.71% (7)	20% (2)	6	100% (7)		100% (7)	80% (4)
/tr, dr/ produced	0%	0%	0%		23.08% (3)	0%	C	0%	0%		0%		0%	0%
Canonical Palat. rule	75%	60%	33.3%	,	100%	50%	1	100%	100	%	0%		75%	75%
G1	11		12	1	3	14		15		16	(G2)	1	7 (G3)	18 (G4)
/tri, dri/ >> [ʧi, ʤi]	12.5% (1)	6	36.8% (7)	0	%	0%		14.29% (1)	ò	75% (12			3.33% 5)	80% (8)
/tri, dri/ >> [ti, di]	87.5% (7)	6	63.2% (12)		00% 2)	100% (9)		85.71% (6)	, D	25% (4)	%		6.67% 1)	20% (2)
/tr, dr/ produced	0%		0%		00% 1.59%		3.7% (2)		41. (5)	67%		6.47% 9)	27.5% (11)	
Canonical Palat. rule	66.67	' %	100%	5	0%	100%		20%		100)%	1	00%	100%

What about palatalizing CCV contexts?

Palatalization in /tri, dri/ contexts can be:

Blocked;

Applied;

Sometimes applied.

- \rightarrow Distribution: CCV palatalization \neq CV palatalization
- → [tri,dri] target articulation did'nt blocked CCV palatalization

 \rightarrow So, sometimes in the outputs of the same child,

Turning back to our main question

Variability in CCV child outputs:

- Are there patterns in the variability?

Yes!

Structural patterns

Developmental patterns

- Repair strategies in CCV starts changing the syllabic structure;
- o Then the outputs tend to keep the complex onset structure, with modifications in its segmental content;
- Palatalization in CCV contexts tend to be blocked after G1;
 in G1, CCV can sometimes be palatalized.

Turning back to our main question

What it can reveal about the phonological system in development?

 Repair strategies distribution tend to keep the complex onset structure, modifying its segmental content;

> Sometimes a structural change appears in the output; Sometimes the target output appears.

Palatalization sometimes apply, sometimes don't;

Variability points to a gradual specification in the **Phonology**

Structure properties

Segmental C2 properties

Future research

- ♦ To test production, perception and error detection of children;
- ♦ To test the underspecification in properties as:

```
liquid quality;
```

plosive PoA;

structure: CV or CVC;

phonological neighborhood.

The variability in child outputs:

Is there a clue to phonological underspecification?

Andressa Toni andressa.toni@usp.br

References

BISOL, L. A sílaba e seus constituintes. In: Gramática do Português falado – Volume 7, 1999.

COLLISCHONN, G. A sílaba em Português. In: BISOL, L. (Org.) Introdução a estudos de fonologia do português brasileiro. Porto Alegre: Edipucrs, 2005.

FIKKERT, P.. Developing representations and the emergence of phonology: evidence from perception and production. In: FOUGERON, KÜHNERT, D'IMPERIO, VALLÉE (Eds.), Laboratory Phonology 10: Variation, Phonetic Detail and Phonological Representation (Phonology & Phonetics 4-4), 2010.

HARRIS & LINDSEY, There is no level of phonetic representation. In: http://www.phon.ucl.ac.uk/publications/WPL/93papers/UCLWPL5%2015%20Harris%20&%20Lindsey.pdf

HARRIS, Elements of phonological representation. In: Durand & Katamba, 1995.

KRÄMER, M. Underlying Representations. Cambridge: Cambridge University Press, 2012.

LAHIRI & MARSLEN-WILSON. The mental representation of lexical form: a phonological approach to the recognition léxicon. *Cognition* (38), 1991.

LAMPRECHT, R. R. A aquisição da fonologia do Português na faixa etária dos 2:9-5:5. *Letras de Hoje*, v.28, n.2, p.99-106, jun. 1993. MENDES, R. B. Projeto SP2010: Amostra de Fala Paulistana. Disponível em: http://projetosp2010.fflch.usp.br/

NESPOR, M. & I. VOGEL (1986) *Prosodic Phonology* Dordrecht: Foris Publications.

RIBAS, L. Aquisição do Onset Complexo. Dissertação de Mestrado, Porto Alegre: PUCRS, 2002.

RIBAS, L. Onset complexo: características da aquisição. Letras de Hoje, v. 38, n.2, p. 23-31, 2003.

RIBAS, L. Sobre a aquisição do onset complexo. In: LAMPRECHT, Regina R. (Org.). *Aquisição fonológica do Português: Perfil de desenvolvimento e subsídios para terapia*. Porto Alegre: Artmed, 2004. p. 151-164.